2023 Research Projects

Projects are posted below; new projects will continue to be posted. To learn more about the type of research conducted by undergraduates, view the archived symposium booklets and search the past SURF projects.

This is a list of research projects that may have opportunities for undergraduate students. Please note that it is not a complete list of every SURF project. Undergraduates will discover other projects when talking directly to Purdue faculty.

You can browse all the projects on the list or view only projects in the following categories:


Radiation Hardening (4)

 

SCALE Radiation Hardening: Hybrid radiation shielding design and multi-objective optimization 

Description:
This project is one of several SCALE SURF research projects. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023. Please note that US citizenship is required to receive a SURF fellowship for this specific project.

Since there are multiple types of radiation in space environments, it is important to shield against these different sources. However, different materials have different levels of shielding against different radiation sources. In this project, we will devise a hybrid shielding material to protect against multiple sources of radiation (e.g., neutrons and protons.)

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Material Modeling and Simulation, Microelectronics, Radiation Hardening
Preferred major(s):
  • Electrical Engineering
  • Nuclear Engineering
  • Computer Engineering
  • Materials Engineering
Desired experience:
1. Experience with programming in Python, C/C++, and/or MATLAB. 2. Enthusiasm for scientific programming. Understanding of radiation transport and electromagnetism.
School/Dept.:
Electrical & Computer Engineering
Professor:
Peter Bermel

More information: https://research.purdue.edu/scale

 

SCALE Radiation Hardening: Modeling radiation effects on semiconductor diodes 

Description:
This project is one of several SCALE SURF research projects. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023. Please note that US citizenship is required to receive a SURF fellowship for this specific project.

One of the important limits for device operation is the space-charge limit, which corresponds to the maximum allowed current before no more electrons cannot be emitted into a diode. This limit is given by the Mott-Gurney law in a trap-free solid or the Mark-Helfrich law for a solid with traps distributed exponentially in energy. Because ionizing radiation will create electrons and ions in a semiconductor device, this project will involve elucidating the effect of these charges on these limits. This may include using simulations to characterize behavior or adapting analytic theories to include ionizing radiation effects.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Material Modeling and Simulation, Microelectronics, Nanotechnology, Radiation Hardening
Preferred major(s):
  • Nuclear Engineering
  • Electrical Engineering
  • Materials Engineering
  • Computer Engineering
Desired experience:
1. Experience with programming in Python, C/C++, and/or MATLAB. 2. Enthusiasm for scientific programming. Understanding of radiation transport and electromagnetism.
School/Dept.:
Nuclear Engineering
Professor:
Allen Garner

More information: https://research.purdue.edu/scale

 

SCALE Radiation Hardening: Radiation Effects on Space Solar Cells for Planetary Missions 

Description:
This project is one of several SCALE SURF research projects. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023. Please note that US citizenship is required to receive a SURF fellowship for this specific project.

Solar cells are used as the primary power source for earth-orbiting satellites and as a primary/secondary source for various missions within the solar system. However, high energy particles from the sun, planetary magnetospheres, and the galaxy can impact solar cells in outer space. This can affect the performance and life expectancy of the space solar cell and associated power systems. Therefore, this study will analyze the performance of space solar cells, particularly the SolAero IMM-α, at various planetary orbits, such as Earth and Jupiter. This is done by using the Naval Research Lab Displacement Damage Dose (DDD) methodology by (1) obtaining particle fluence data and calculating the DDD of a specific orbit using SPENVIS; and (2) analyzing the solar cell’s performance/degradation with the given DDD.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Material Modeling and Simulation, Microelectronics, Radiation Hardening
Preferred major(s):
  • Electrical Engineering
  • Nuclear Engineering
  • Computer Engineering
  • Materials Engineering
  • Mechanical Engineering
Desired experience:
1. Experience with programming in Python, C/C++, and/or MATLAB. 2. Enthusiasm for scientific programming. Understanding of radiation transport and electromagnetism.
School/Dept.:
Electrical Engineering
Professor:
Peter Bermel

More information: https://research.purdue.edu/scale

 

SCALE Radiation Hardening: Radiation-effects testing 

Description:
This project is one of several SCALE SURF research projects. By applying to this project, you can be considered for any of the SCALE projects with one application. See https://nanohub.org/groups/scale/research_su23 to view all of the SCALE SURF research projects for summer 2023. Please note that US citizenship is required to receive a SURF fellowship for this specific project.

Commercial off-the-shelf electronics are appealing for satellite applications because of their high capabilities (e.g., processing speed or memory). While they are generally tested for reliability for terrestrial applications, most manufacturers don’t have time to test or qualify them for space applications. In this project, we’ll select a novel commercial device to test, and develop a test procedure for testing. Last summer, our methodology was applied to a commercial magnetoresistive random access memory (MRAM) device, using a Gammacell chamber on campus. We will have the option to either extend that previous work or test a novel commercial device that has not been tested before.

In your application, please specify which of the SCALE technical areas you are most interested in. The technical areas are:
• Radiation Hardening
• System-on-Chip
• Heterogenous Integration/ Advanced Packaging
• Program Evaluation
Be sure to name any specific SCALE projects you are interested in, and include information about how you meet the required and desired experience and skills for each of these projects.

For US citizen students who are interested: you can become part of the Purdue microelectronics program called SCALE, sponsored by the Department of Defense. In SCALE, you will have opportunities for continuing research (paid or for credit) and industry and government internships throughout your time at Purdue. Please apply to SCALE here: https://research.purdue.edu/scale/.
Research categories:
Material Processing and Characterization, Microelectronics, Radiation Hardening
Preferred major(s):
  • Electrical Engineering
  • Computer Engineering
  • Nuclear Engineering
  • Materials Engineering
  • Mechanical Engineering
Desired experience:
1. Experience with programming in Python, C/C++, and/or MATLAB 2. Enthusiasm for scientific programming. Understanding of radiation transport and electromagnetism.
School/Dept.:
Electrical & Computer Engineering
Professor:
Peter Bermel

More information: https://research.purdue.edu/scale